
3

2

1
Solver-Aided Chorale Composition Junrui Liu

Introduction

Background

Overview

A chorale typically consists of four independent voices. 
Each voice is a sequence of notes drawn from a fixed 
collection known as a scale. At each time step, the set of 
notes from all voices form a chord, whose evolution is 
called a progression.

Composing music is hard: if you hit the keys on a piano 
randomly, chances are, it won’t sound great. A music theory 
aims to distill a musical syntax such that a syntactically 
correct composition will not sound “wrong.” Thus, 
composition can be viewed as a constraint satisfaction 
problem: given a background theory, find a sequence of 
composition actions that does not violate the theory’s 
syntax. We corroborate this view by developing a tool called 
Choco for composing music in the style of Baroque chorales 
using Rosette [1]. This project is inspired by [2].

4 Optimizations 5 Future Work

(i) The user provides a chorale sketch, which may 
contain symbolic notes and symbolic chords.
In the sketch on the right:
• The top voice is concrete, while all remaining voices 

are symbolic, to be filled by the solver.
• The progression’s first and last chords are specified 

(I and V), while all remaining chords undetermined.

Voice

Chord

Notes

Time

⋯

⋯

⋯

⋯

{⋯} {⋯} {⋯} {⋯} {⋯} ⋯ Progression

!!"# $
%
%& $

! ! !! ! ! ! "
%
%

Music engraving by LilyPond 2.22.2—www.lilypond.org

I ? ? ? ? ? ? V

(ii) Our framework encodes the syntactic rules of 
classical harmony as logical predicates. E.g.,
• All voices are in harmony w.r.t. the chord.
• Voices cannot “cross” each other.

∀n ∈ 𝒱 . ∃pc ∈ 𝒞 . n ≡ pc

∀n, m ∈ 𝒱t × 𝒱t+1 . 𝖵(n) < 𝖵(m) ⟹ n < m

(iii) We use angelic execution to fill the sketch in a 
way that satisfies all syntax rules.

(define model (solve (assert cs)))
(evaluate sketch model)

!!" #

!!$ #
I7C:

%
!!
!!
V7

! !!
!!

V/IV7

& !!
!!
iv6

4

&
&

!!
!!
V4

2

%%
!!
!!
V/ii6

&
!!
!!
ii7

!!
!!
I4

2

Music engraving by LilyPond 2.22.2—www.lilypond.org

I V7 /iv iv6
4 V6

4 V6
5 /ii ii I V

1. Tabulate expensive symbolic 
computation via pre-computation.

2. Modular synthesis via horizontal 
(temporal) and vertical (chordal) 
decomposition wth backtracking.

3. Transform constraints to avoid 
expensive modular operations.

1. Design a DSL for specifying syntax of 
different music genres and theories.

2. Frame composition as optimal synthesis 
problem to account for soft syntactical 
constraints.

3. Extend framework to incorporate metric 
theory and transformational theory.

[1]: Torlak, Bodik. A Lightweight Symbolic Virtual Machine for Solver-Aided 
Host Languages. PLDI’14.
[2]: Cong, Leo. Counterpoint by Construction. FARM’19.
[3]: (Similar work) https://github.com/kach/recreational-rosette/tree/
master/music.

References

https://github.com/kach/recreational-rosette/tree/master/music
https://github.com/kach/recreational-rosette/tree/master/music

