Junrui Liu — Research Statement 1

The pace at which code is produced has far outstripped efforts to ensure its correctness, anal-
ogous to how buildings are hastily erected before engineers can guarantee their stability. My
research applies programming languages and formal methods to strengthen the correctness and
reliability of software in emerging domains.

I focus on making new software trustworthy and scalable through the design of domain-
specific languages (DSLs) that offer reusable, safe interfaces. These DSLs not only help developers
clearly express intent (reducing bugs), but also allow program synthesizers to automatically gener-
ate correct implementations from specifications. To improve assurance for existing software, I use
formal verification to prove the absence of critical classes of bugs. I have applied this approach
across diverse domains, from end-user applications like data visualization to expert systems such
as privacy-preserving software and browser layout engines.

My future directions build on this foundation and lend themselves well to undergraduate
research, as it spans both theoretical work in language and algorithm design and tool implemen-
tation projects with real-world impact.

Past Research

Verification and Compilation of Zero-Knowledge Proof Software In my thesis, I apply my ap-
proach to the zero-knowledge proof (ZKP) domain. ZKPs let one prove a statement’s truth with-
out revealing its content, enabling applications from secure age verification to certifying unaltered
media. Yet adoption remains limited: developers must write complex arithmetic circuits, where
bugs can allow attackers to prove falsehoods and compromise systems silently.

My key insight is to raise the abstraction level of ZKP languages: provide (1) a high-level
language for safer development and verification, and (2) a compiler that optimizes these programs
into efficient circuits.

For the language, I co-designed Coda [4], which combines familiar syntax with domain-specific
abstractions and an expressive refinement type system. Developers can specify precise logical
properties and verify them using the Rocq proof assistant. We re-implemented 77 circuits, for-
mally proved their correctness, and uncovered six zero-day vulnerabilities. This work appeared
at 2024 IEEE Security & Privacy, and has been adopted by Veridise, a leading blockchain security
startup company, to perform security audits for critical ZKP infrastructure projects [6].

For compilation, I built an optimizing compiler targeting ZKP backends [5]. Since compu-
tations admit many equivalent circuit representations with drastically different costs, developers
previously relied on painstaking manual tuning. Our compiler replaces this with program synthe-
sis, automatically discovering optimal implementations. It reduces proof generation time—a key
ZKP metric—by up to 94% over existing tools. This work will appear at 2025 Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), a premier venue for programming
languages research.



Junrui Liu — Research Statement 2

Synthesis of Data Visualization Programs Visualizations are essential for exploring and sharing
data, yet creating effective ones is difficult for non-experts who must master complex libraries like
R, Python, or D3. To democratize visualization, we introduced Calico [3], a system that synthesizes
visualization programs from user intent. Calico provides a refinement type-based DSL: instead of
manually wrangling data, users supply type annotations that constrain visual attributes or specify
relationships between visual components in the desired graph. Our synthesis algorithm then uses
lightweight bidirectional type checking to generate candidate visualizations. Calico solved 98%
of benchmarks from online forums and proved easy to learn in a user study with participants
lacking visualization expertise. This work appeared at 2024 Automated Software Engineering
(ASE), a leading software engineering venue.

Synthesis of Browser Layout Engine Web browsers rely on layout engines to render pages from
HTML and CSS, but building them is notoriously complex and error-prone, often leading to vi-
sual glitches that impact billions of users. Our work [1, 2] tackles this with program synthesis.
We designed a DSL, based on attribute grammars, for specifying layout semantics declaratively.
A synthesis algorithm then generates a schedule ensuring attributes are computed only when
dependencies are available, eliminating entire classes of layout bugs. The system also supports
incremental layout, recomputing only what changes after small user interactions.

From declarative CSS specifications, our tool synthesized a layout engine we integrated into
an experimental Mozilla browser. The result was correct-by-construction and avoided many bugs
found in existing engines. This work appeared at 2022 Architectural Support for Programming
Languages and Operating Systems (ASPLOS) and 2023 Programming Language Design and Im-
plementation (PLDI), top venues in systems and programming languages.

Ongoing and Future Work

More Expressive DSLs for ZKP Programming Our Coda language currently has limited sup-
port for unbounded loops and mutable storage. Recent backend advances, such as recursive
proofs and lookup tables, now make these features feasible. Can we design an ergonomic ZKP
language that incorporates such expressiveness without sacrificing performance? Can compilers
leverage backend features to optimize these programs automatically?

Formal Verification of Zero-Knowledge Virtual Machines An emerging paradigm compiles
high-level ZKP programs into assembly for a dedicated ZK virtual machine (ZKVM), bridging con-
ventional ISAs with ZK protocols. This enables expressiveness on par with mainstream languages
but demands highly sophisticated ZKVM implementations. Since ISAs already have precise for-
mal specifications, this presents an excellent opportunity for verification. Can we combine auto-
mated and interactive methods to fully verify realistic ZKVMs?



Junrui Liu — Research Statement 3

LLMs for Mathematical Theorem Proving In Coda, we used the Rocq proof assistant to prove
circuit correctness—proofs that are long and tedious. Large language models show early promise
in assisting with formal proofs, yet current approaches fail to scale beyond toy examples. Can
we combine LLMs’ inductive reasoning with formal methods’” deductive power to prove more

complex theorems in interactive provers? One of my ongoing collaborations explores this synergy.

Supporting Undergraduate Research

I am passionate about guiding undergraduates into research, inspired by my own liberal arts
education at Vassar College. At UCSB, I strive to recreate that supportive environment which
kindled my interest in computer science research.

In general, I integrate elements of research into teaching to spark curiosity and foster a “re-
search mindset” through discovery learning (see my teaching statement). After class, I also con-
nect with students to learn their interests and match them with opportunities. For example, I have
encouraged undergraduates in my class to audit or enroll in my graduate course on program
verification, and recommended highly motivated students to faculty for research assistantships.

I had the fortune to mentor four undergraduates. My approach is to first understand each stu-
dent’s “taste” and strengths, then design scaffolded tasks that build toward concrete deliverables.
For example, Yanning Chen was fascinated by programming language theory, so I carved out a
design space for her to explore various alternatives for compiler IR; her design later ended up in
our final compiler! For students who who are avid systems builders (Nicholas Brown, Hanzhi Liu
and Jiaxin Song), I created scaffolded projects with clear system input-output specifications, and
met regularly to discuss implementation trade-offs, offer debugging tips, and pair-program when
they got stuck.

In every case, my mentees made measurable progress that led to top-conference publications.
They have since pursued selective PhD programs (UIUC, UCSB, University of Toronto, and Cor-
nell University) or engineering roles at major tech companies (e.g., Meta).

I look forward to continuing this tradition as a faculty member. I'm excited to involve stu-
dents in my ongoing projects: students can freely choose from a range of topics, from theoretical
explorations of new DSL designs for ZKP programming to hands-on implementation of synthesis
algorithms and verification tools. I am committed to providing the mentorship and resources they
need to thrive as researchers.

References

[1] Yanju Chen, Junrui Liu, Yu Feng, and Rastislav Bodik. Tree traversal synthesis using domain-
specific symbolic compilation. In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS "22, page 1030-1042,
New York, NY, USA, 2022. Association for Computing Machinery.



Junrui Liu — Research Statement 4

[2] Junrui Liu, Yanju Chen, Eric Atkinson, Yu Feng, and Rastislav Bodik. Conflict-driven synthesis
for layout engines. Proc. ACM Program. Lang., 7(PLDI), June 2023.

[3] Junrui Liu, Yanju Chen, Bryan Tan, Isil Dillig, and Yu Feng. Learning contract invariants using
reinforcement learning. In Proceedings of the 37th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 22, New York, NY, USA, 2023. Association for Computing
Machinery.

[4] Junrui Liu, Ian Kretz, Hanzhi Liu, Bryan Tan, Jonathan Wang, Yi Sun, Luke Pearson, Anders
Miltner, Isil Dillig, and Yu Feng. Certifying zero-knowledge circuits with refinement types. In
2024 IEEE Symposium on Security and Privacy (SP), pages 1741-1759, Los Alamitos, CA, USA,
May 2024. IEEE Computer Society.

[5] Junrui Liu, Jiaxin Song, Yanning Chen, Hanzhi Liu, Hongbo Wen, Luke Pearson, and Yu Feng.
Tabby: A synthesis-aided compiler for high-performance zero-knowledge proof circuits. vol-
ume 9, New York, NY, USA, October 2025. Association for Computing Machinery.

[6] Veridise. Semaphore audit report. https:/ /veridise.com/audits-archive /company/
semaphore/semaphore-groups-v3-2023-01-05. [Online; accessed 05-Sep-2025].


https://veridise.com/audits-archive/company/semaphore/semaphore-groups-v3-2023-01-05
https://veridise.com/audits-archive/company/semaphore/semaphore-groups-v3-2023-01-05

