Junrui Liu - Teaching Statement 1

“Isn’t it great when you propose something in class, you discover
that the world goes exactly that way?”
— Anonymous student

Slightly paraphrased, this quote from a student evaluation captures my approach to teaching computer
science: fostering the joy of discovery learning, grounded in mutual trust between instructor and students.
My goal is to use joy and trust as a way to counter impostor syndrome, which is prevalent in CS higher
education [7] and disproportionately affects students from underrepresented backgrounds [8]. I try to use
every opportunity in my teaching to remind students: You can do this. In fact, you just did!

Philosophy 1: Joy Joy of learning takes many forms. In my classes, I guide students to experience the joy
of discovery [3]: those moments when a student independently (re)discovers a result that is unexpected,
elegant, or mathematically true. I believe this joy is a universal and powerful emotion. Compared to merely
being fed knowledge, a first-hand experience of discovery enables students to practice key problem solving
skills and contribute to a growth mindset [5].

To this end, I often model the discovery process in class by structuring lectures as guided explorations.
Beginning with a simple, motivating problem, I invite students to try straightforward (if not naive) meth-
ods. Together we observe where these attempts fall short, and gradually refine them into a general algo-
rithm. Throughout, I discuss and value every student proposal—even those that I know will fail—because
the process of trial and error is more important than “one-shotting” the correct answer.

After class, this process continues through inquiry- and discovery-based projects. For example, in my un-
dergraduate course on programming languages (initially as a TA) and graduate course on software verifica-
tion (as a co-instructor), I developed projects where students gradually rediscover important concepts and
algorithms. I begin with simple, concrete problems that build intuition for the general solution, then care-
fully remove scaffolds until students arrive at the anticipated idea themselves. I also intentionally disguise
those hard problems in plain, simple clothing to remove the historical baggage and make them feel less
daunting to approach. Only after students have overcome the challenge do I reveal to them the significance
of their accomplishment: “You could have been the first to discover this if you were born earlier!”

Through these projects, my students have re-invented sequent calculus in proof theory!, built a meta-
circular interpreter for lambda calculus?, and re-discovered non-chronological backtracking in modern SAT
solvers®. Some students have reported that those projects were among the most rewarding parts of the
course, and even reached out to inquire about related research opportunities!

Philosophy 2: Trust Genuine learning requires trial and error, yet I have observed that one of the biggest
obstacles in computer science classes is students” discomfort in seeking help. This often stems from the
perceived authority of the instructor and the fear of asking “stupid” questions in front of peers in an (arti-
ficially imposed) competitive environment [4]. So I strive to build a trusting relationship with each of my
students and a non-competitive environment where they feel safe to express confusion and make mistakes.

In fact, I create an environment where mistakes are encouraged. For example, when I taught Program-
ming Languages as an instructor, I experimented with a grading system where students earn “tokens” by
asking or answering questions in class*. I emphasize any class-related contribution counts, even (and espe-
cially) questions that express confusion. Students then redeem their tokens to retry exam questions they got

Link to assignment : https:/ /github.com/junrui-liu/CS162-TA /tree/winter-2024/homework/hw5

2Link to assignment : https:/ /github.com/junrui-liu/CS162-TA /tree/ winter-2024 /homework /hw3

3Link to assignment : https:/ / github.com/junrui-liu/CS292C/tree / master / projects / proj2

%A description of the token system in my syllabus: https:/ /junrui-liu.github.io/cs162/syllabus.html#token-system


https://github.com/junrui-liu/CS162-TA/tree/winter-2024/homework/hw5/#part-5-%EF%B8%8Fbonus%EF%B8%8F
https://github.com/junrui-liu/CS162-TA/tree/winter-2024/homework/hw3#part-4-encoding-recursive-data-structures-into-lambda-calculus
https://github.com/junrui-liu/CS292C/tree/master/projects/proj2#part-3-proof-of-cdcl-unsatisfiability-extra-credit-5-points
https://junrui-liu.github.io/cs162/syllabus.html#token-system

Junrui Liu - Teaching Statement 2

wrong, making assessments formative [2]. As one student put it, the token system was not only “helpful
but motivates students to learn from mistakes.”

I also cultivate a sense of perceived social support [6] early in the term through small but intentional
gestures: learning every student’s name by the end of the first week, sending surveys to understand their
interests, and periodically checking in to adjust my teaching. As a concrete example, in my Programming
Languages course, I noticed a student falling behind after the first quiz who had not attended office hours.
Ireached out and learned they had less CS background than their peers and were also balancing a part-time
job. Together we created a personalized plan, including one-on-one review and problem sessions after their
work hours, which helped them steadily catch up with the class.

Teaching Experience

As a teaching assistant I have served as a TA for eight quarters at UCSB and have received both de-
partmental and college teaching awards for the past three years (see CV). In this role, I led weekly review
and problem sessions for groups of 10-30 students, often incorporating active learning techniques such as
think-pair-share and collaborative problem solving. For instance, in one compilers review session I de-
signed a Jeopardy-style game®, where I divide the class into two teams for students to collaborate and solve
customized prompts drawn from course materials as a playful way to review and earn extra credit.

As an instructor At UCSB, I taught CS 162, an undergraduate course on programming languages with
11 students®. Although I had extensive TA experience for this class, I chose to re-imagine it from scratch,
incorporating the following elements: (1) I emphasized learning by doing. For example, I structured several
lectures as workshops’ where students used pencil and paper to draw the formal syntax and semantics
of programs, helping them build physically grounded mental models. (2) I curated weekly reflection as-
signments that exposed students to broader implications of programming languages, such as feminism in
language design®.

I also co-taught CS 292C, Computer-Aided Reasoning for Software (Spring 2024, 17 students), a gradu-
ate course on software verification. In addition to developing a new module on interactive theorem proving
and giving weekly lectures, I reworked the assessments, replacing them with three research-based assign-
ments where students investigated and implemented key techniques in software verification.

Reflections and Growth

I love teaching, and this motivates me to keep improving. I actively seek feedback through mid-quarter
surveys and informal check-ins, and I adapt my teaching based on what students share.

Outside of class, I make a point of keeping up with research in CS education and pedagogy. I have
completed two teaching training programs at UCSB (Summer Teaching Associate Institute and Lead TA
Institute) and am pursuing UCSB’s Certificate in College and University Teaching. I also look forward
to serving as my department’s Lead TA this academic year, where I will train and mentor new computer
science TAs in effective teaching practices.

These experiences have encouraged me to critically reflect on my teaching. One area I am working on
is student community building. While I have focused on cultivating trust between instructor and student, my

5You can play my compilers Jeopardy game here (inspired by [1]): https:/ /jeopardylabs.com/play/compiler-frontend-jeopardy
6Course website: https:/ /junrui-liu.github.io/cs162/syllabus.html

7Example workshop materials: https:/ /junrui-liu.github.io/cs162/lecture-notes /0701.html

8Reflection prompt: https:/ /junrui-liu.github.io/cs162/reflections/ week4.html


https://jeopardylabs.com/play/compiler-frontend-jeopardy
https://junrui-liu.github.io/cs162/syllabus.html
https://junrui-liu.github.io/cs162/lecture-notes/0701.html
https://junrui-liu.github.io/cs162/reflections/week4.html

Junrui Liu - Teaching Statement 3

own experiences as a college student reminded me that peer relationships are equally important, and often
longer lasting, for academic success and well-being. In future courses, I plan to revise projects to encourage
collaboration and peer learning. I believe this is especially fruitful at a liberal arts college, where there is a
consensus of valuing close collaboration, and I look forward to strengthening those ties and fostering new
ones in my classes.

References

[1] Ruixia Bai. Game on: Engaging students with Jeopardy in the classroom. https:/ /otl.ucsb.edu/node/
145, March 2025.

[2] Benjamin S. Bloom. Learning for mastery. In Benjamin S. Bloom, J. Thomas Hastings, and George F.
Madaus, editors, Handbook on Formative and Summative Evaluation of Student Learning, pages 43-57.
McGraw-Hill, New York, 1971.

[3] Jérome Seymour Bruner. The act of discovery. Harvard Educational Review, 31:21-32, 1961.

[4] Anael Kuperwajs Cohen, Alannah Oleson, and Amy J. Ko. Factors influencing the social help-seeking
behavior of introductory programming students in a competitive university environment. ACM Trans.
Comput. Educ., 24(1), February 2024.

[5] Carol S. Dweck. Mindset: The New Psychology of Success. Random House, New York, 2006.
[6] Howard S. Friedman, editor. Encyclopedia of Mental Health. Academic Press, Oxford, 2nd edition, 2016.

[7] Adam Rosenstein, Aishma Raghu, and Leo Porter. Identifying the prevalence of the impostor phe-
nomenon among computer science students. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, SIGCSE 20, page 30-36, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[8] Bianca Trinkenreich, Ricardo Britto, Marco A. Gerosa, and Igor Steinmacher. An empirical investigation
on the challenges faced by women in the software industry: A case study. In Proceedings of the 44th
ACMY/IEEE International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS),
pages 24-35, New York, NY, USA, 2022. IEEE / ACM.


https://otl.ucsb.edu/node/145
https://otl.ucsb.edu/node/145

